Convergence of the randomized Kaczmarz method for phase retrieval

نویسندگان

  • Halyun Jeong
  • C. Sinan Güntürk
چکیده

The classical Kaczmarz iteration and its randomized variants are popular tools for fast inversion of linear overdetermined systems. This method extends naturally to the setting of the phase retrieval problem via substituting at each iteration the phase of any measurement of the available approximate solution for the unknown phase of the measurement of the true solution. Despite the simplicity of the method, rigorous convergence guarantees that are available for the classical linear setting have not been established so far for the phase retrieval setting. In this short note, we provide a convergence result for the randomized Kaczmarz method for phase retrieval in R. We show that with high probability a random measurement system of size m d will be admissible for this method in the sense that convergence in the mean square sense is guaranteed with any prescribed probability. The convergence is exponential and comparable to the linear setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Retrieval via Randomized Kaczmarz: Theoretical Guarantees

We consider the problem of phase retrieval, i.e. that of solving systems of quadratic equations. A simple variant of randomized Kaczmarz method was recently proposed for phase retrieval, and it was shown numerically to have a computational edge over state-of-the-art Wirtinger flow methods. In this paper, we provide the first theoretical guarantee for the convergence of the randomized Kacmarz me...

متن کامل

Linear Convergence of An Iterative Phase Retrieval Algorithm with Data Reuse

Phase retrieval has been an attractive but difficult problem rising from physical science, and there has been a gap between state-of-the-art theoretical convergence analyses and the corresponding efficient retrieval methods. Firstly, these analyses all assume that the sensing vectors and the iterative updates are independent, which only fits the ideal model with infinite measurements but not th...

متن کامل

Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study

We study the Kaczmarz methods for solving systems of phaseless equations, i.e., the generalized phase retrieval problem. The methods extend the Kaczmarz methods for solving systems of linear equations by integrating a phase selection heuristic in each iteration and overall have the same per iteration computational complexity. Extensive empirical performance comparisons establish the computation...

متن کامل

A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms

We study the problem of solving a quadratic system of equations, i.e., recovering a vector signal x ∈ R from its magnitude measurements yi = |〈ai,x〉|, i = 1, ...,m. We develop a gradient descent algorithm (referred to as RWF for reshaped Wirtinger flow) by minimizing the quadratic loss of the magnitude measurements. Comparing with Wirtinger flow (WF) (Candès et al., 2015), the loss function of ...

متن کامل

Randomized Block Kaczmarz Method with Projection for Solving Least Squares

The Kaczmarz method is an iterative method for solving overcomplete linear systems of equations Ax = b. The randomized version of the Kaczmarz method put forth by Strohmer and Vershynin iteratively projects onto a randomly chosen solution space given by a single row of the matrix A and converges exponentially in expectation to the solution of a consistent system. In this paper we analyze two bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.10291  شماره 

صفحات  -

تاریخ انتشار 2017